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Figure 1: High-fidelity visualization (volume and implicit isosurface rendering) of the NASA ExaJet dataset (field: vorticity) [Exa98]. This
dataset contains 656M cells (1.31B after instancing) of adaptive resolution and 63.2M triangles (126M after instancing). This 2400⇥600
image is rendered on a workstation with four Intel Xeon E7-8890 v3 CPUs (72 cores, 2.5 GHz) at a framerate of 6.64 FPS.We show that our
system has the capability of ray tracing TB-AMR data in combination with advanced shading effects like ambient occlusion and path tracing.

Abstract

Adaptive mesh refinement (AMR) techniques allow for representing a simulation’s computation domain in an adaptive fashion.
Although these techniques have found widespread adoption in high-performance computing simulations, visualizing their data
output interactively and without cracks or artifacts remains challenging. In this paper, we present an efficient solution for
direct volume rendering and hybrid implicit isosurface ray tracing of tree-based AMR (TB-AMR) data. We propose a novel
reconstruction strategy, Generalized Trilinear Interpolation (GTI), to interpolate across AMR level boundaries without cracks or
discontinuities in the surface normal. We employ a general sparse octree structure supporting a wide range of AMR data, and
use it to accelerate volume rendering, hybrid implicit isosurface rendering and value queries. We demonstrate that our approach
achieves artifact-free isosurface and volume rendering and provides higher quality output images compared to existing methods
at interactive rendering rates.

1. Introduction

AMR techniques have been broadly adopted to solve complex
large-scale simulation problems in high-performance computing.
By providing an adaptive, hierarchical representation of the com-
putational domain, they allow the simulation to focus computation
and memory in regions of interest and to better resolve fine detail
features of interest [DAB⇤14]. Since its introduction by Berger and
Oliger [BO84], AMR has been widely adopted in numerous sim-
ulation frameworks, e.g., AMReX [ZAB⇤19], LAVA [KBH⇤14],
Enzo [OBB⇤05], Chombo [CGL⇤00], Paramesh [MOM⇤00] and
p4est [BWG11]. However, native support for AMR formats in cur-
rent visualization tools remains limited, and visualizing the output
of these simulations remains a challenge.

† feng@sci.utah.edu

A key issue when visualizing AMR data is performing correct in-
terpolation of values across level boundaries to reconstruct the field.
Although recent works have sought to address this issue, they require
either introducing unstructured elements to stitch across the bound-
aries [WCM12, ME11], turning the AMR rendering problem into
an unstructured mesh rendering problem [NSLD99], or do not al-
ways ensure a smoothly reconstructed field [WBUK17, WWW⇤19],
leading to artifacts when rendering isosurfaces. Although capable
of visualizing Block-Structured AMR data, current visualization
packages (e.g., VTK [Kit03], VisIt [CBW⇤12], ParaView [Aya15],
OSPRay [WJA⇤16]) provide only limited support for interactive
ray tracing of Tree-Based AMR data. A common practice is to flat-
ten Tree-Based AMR data out to a larger single-level structured
or unstructured mesh, which is then rendered without any form of
interpolation across boundaries. This practice is highly undesirable,
as it requires significantly more memory to store and poorly repre-
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sents the original data. Although ongoing work has begun exploring
a method to provide a native representation of TB-AMR data in
VTK [HLP17b, HLP17a], how to perform interactive ray tracing
over the presented data structure remains a challenge.

To address these challenges, we propose an efficient solution
for interactive volume and implicit isosurface ray tracing of cell-
centered tree-based AMR. Our visualization approach is built on a
novel reconstruction strategy for interpolating across level bound-
aries, which we call Generalized Trilinear Interpolation (GTI). GTI
ensures the reconstructed field is smooth and enables visualizations
that more accurately represent ground-truth than the existing AMR
reconstruction approaches. To support arbitrary AMR formats, we
reorganize the leaf cells into a sparse octree. We implement vector-
ized tree traversal kernels for fast data query and sampling, along
with empty space skipping and adaptive sampling for volume render-
ing, and active cell filtering for isosurface rendering. We integrate
our reconstruction method and volume layout into the OSPRay ray
tracing framework [WJA⇤16] as a module, allowing us to support
high-quality combined volume and isosurface visualization. Our
contributions are:

1. A novel reconstruction strategy for cell-centered AMR data, GTI,
that enables artifact-free volume and isosurface rendering;

2. An efficient high-fidelity visualization solution for both AMR and
other multiresolution grid datasets on multicore CPUs, supporting
empty space skipping, adaptive sampling and isosurfacing;

3. Integration of our method into the OSPRay ray tracing library
and open-source release† to make it widely available to domain
scientists.

2. Background

AMR simulation techniques can be divided into two categories:
Block-Structured (BS-AMR), also known as patch-based AMR, and
Tree-Based (TB-AMR), also known as point-wise structured AMR.
The fundamental difference between the two approaches is a trade-
off between algorithm complexity and memory footprint [HLP17b].

BS-AMR grids are stored as a hierarchy of overlapping and suc-
cessively finer uniform grids (see Figure 2a). The successive grids in
BS-AMR data overlap, with data existing at all levels of refinement.
In some packages, BS-AMR meshes also allow for more than one
level of difference across level boundaries. In contrast, TB-AMR
data are represented as trees, in which nodes can be refined when
more details are needed in a region (see Figure 2b). For example,
p4est encodes the computational domain using multiple linear oc-
trees [BWG11]. The refinement levels of neighboring cells differ
by one. A TB-AMR mesh typically requires less memory than its
BS-AMR equivalent [HLP17b], since no redundancy lies at the
finer region in the domain; however, TB-AMR meshes can be more
complex and time consuming to perform visualization and analysis
on [HLP17a].

AMR data can be further classified as vertex-centered or cell-
centered, according to the relative location of the data points. Al-
though designing an effective reconstruction strategy for vertex-
centered AMR data is easier than for cell-centered data [WWW⇤19],

† https://github.com/ethan0911/TB-AMR

(a) Block-Structured AMR (b) Tree-Based AMR
Figure 2: Examples of different AMR grids. (a) The mesh has four
overlapping uniform grids; (b) arbitrary mesh cells can be refined
as needed.

the bulk of existing AMR frameworks operate on cell-centered
grids [WCM12]. Unless otherwise specified, throughout this work
we focus on cell-centered TB-AMR data, with a refinement factor of
two. Although larger refinement factors have been used [DL19], a
factor of two is most frequently found in practice [ME11, MOM⇤00,
BWG11, AN14, Exa98]. Our approach assumes that the TB-AMR
mesh employs a refinement factor of two.

3. Related Work

Generally, rendering volume data can be done using explicit isosur-
face mesh extraction [LC87], direct isosurface ray casting [PSL⇤98]
or direct volume rendering (DVR) [DCH88]. Our work provides
a ray-tracing based solution for the latter two. Ma and Crock-
ett [MC97] are credited with the first AMR volume rendering ap-
proach, based on cell projection [Max93]. Kähler and Hege [KH02]
employed a 3D slicing method and 3D texture proxies on the
GPU, resampling AMR blocks while overlapping coarse- and fine-
resolution AMR levels. This approach, which discards the orig-
inal AMR grid hierarchy and maintains nonoverlapping blocks
that contain only same-level cells, was further extended to direct
ray casting (see, e.g., [KWAH06, KA13]). Gosink et al. [GABJ08]
used out-of-core methods to query and resample AMR data into
structured volumes for rendering on the GPU. Marchesin and de
Verdiere [MDV09] performed special-case analytical ray casting for
hexahedral cell data using piecewise-polynomial approximations.

To provide high-quality volume rendering of multiresolution
datasets, Ljung et al. [LLY06] proposed interblock interpolation
and used GPU fragment shaders to sample between level boundaries
without replication. Beyer et al. [BHMF08] introduced a multilevel
interpolation scheme based on a trapezoid and wedge decomposi-
tion. Although bearing some similarities to AMR, these approaches
were designed for multiresolution rectilinear volume data as op-
posed to AMR grids, and require either explicit normalization of
weights [LLY06] or texture coordinate remapping [BHMF08]. In
contrast, our GTI method requires only a small set of fixed weights
that are derived a priori and implicitly guaranteed to be normalized.
Leaf et al. [LVI⇤13] showed a solution for rendering AMR data in
distributed parallel settings, using an interpolation method similar
to that of Ljung et al. [LLY06].

Correctly handling level boundaries of multiresolution data such
as AMR remains a challenging problem, requiring data structures
that faithfully represent the underlying data and efficient methods
for stitching across levels. Van Gelder and Wilhelms [VGW94] con-
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ducted a survey on this problem and introduced multiple solutions to
address it. Specifically for AMR, Weber et al. [WKL⇤01, WKL⇤03]
first proposed an approach that allows for extracting crack-free
isosurfaces by introducing dual cells and unstructured mesh ele-
ments, extracting the isosurface from the produced unstructured
mesh. Weber et al. [WCM12] later extended their work to run in
parallel [WCM12]. Moran and Ellsworth [ME11] extended Weber et
al.’s approach, and proposed a reconstruction method that allows for
processing a Block-Structured AMR grid in which brick resolutions
at level boundaries can differ by more than one level. To avoid con-
structing unstructured elements to stitch across boundaries, Wald el
al. [WBUK17] explored several different options for smooth volume
rendering of Block-Structured AMR data in a large-scale interactive
CPU-based rendering framework. Wang et al. [WWW⇤19] further
extended this work, and proposed a continuous and adaptive recon-
struction method that allowed for implicit isosurface ray tracing of
Block-Structured AMR data. Although these prior techniques can
produce artifact-free visualizations, they are designed specifically
for Block-Structured AMR data, and do not necessarily extend well
for Tree-Based AMR.

Recently, Harel et al. [HLP17b, HLP17a] contributed a general
approach for supporting Tree-Based AMR data in VTK (the vtkHy-
perTreeGrid). Similarly, Dubois and Lekien [DL19] demonstrated
applications of the hypertree grid in processing and rendering large-
scale AMR data. However, it is unclear how to directly perform
interactive ray tracing on top of the presented structures for volume
ray casting or implicit isosurface rendering. In this work, we provide
an efficient solution that supports interactive high-quality visualiza-
tion of Tree-Based AMR data in the widely used open-source ray
tracing library, OSPRay.

4. Adaptive Octree Representation

Our approach entails representing Tree-Based AMR data as adaptive-
resolution octrees to preserve the AMR hierarchy information. By
preserving this information, we are able to achieve faster and higher
quality rendering with less overhead than the alternatives commonly
used in practice, e.g., flattening the mesh to an unstructured one,
resampling it to a rectilinear grid or converting it to other proxy
representations. In this section, we describe the adaptive octree
layout that we use to store TB-AMR data to accelerate ray traversal
and sample computation.

Broadly speaking, hierarchical data representation lends itself to
logarithmic-time ray traversal and is key to interactively rendering
large-scale datasets [WWJ19]. Moreover, a large number of TB-
AMR simulations use an adaptive-resolution octree as the simulation
mesh, and employing the same data structure for rendering enables
us to easily support such simulations. We employ a compact sparse
octree, somewhat similar to a Sparse Voxel Octree [KWH09,LK10],
with the key difference that we support storing voxels of different
resolutions, which is required to support AMR data. Our choice of
data structure is motivated by the following:

1. Popular TB-AMR frameworks (e.g., Paramesh [MOM⇤00] and
p4est [BWG11]) and solvers (e.g., Cart3D [AN14] and Pow-
erFLOW [Exa98]) work on octrees or octree-like meshes with
a 2:1 refinement ratio. Thus, an adaptive octree representation
inherently fits such simulations well.

Figure 3: The encoding of our octree hierarchy. Each leaf node
corresponds to one input cell in the AMR mesh. Each inner node
encodes which children exist in the tree and the offset to them using a
64-bit descriptor. The children are stored contiguously in the array.

2. Other AMR meshes, such as BS-AMR, can be adapted to an
octree hierarchy.

3. Octree traversal maps well to parallel ray traversal on multicore
CPUs, and ensures the renderer can dynamically adjust the sam-
pling rate to avoid over- and under-sampling.

The encoding used to store the adaptive octree representation
is illustrated in Figure 3. Each node is represented using a 64-bit
descriptor and the value range of its children, if any, and are stored
in an array. For leaf nodes, we pack the single precision data value
of the voxel directly in the descriptor. For inner nodes, we store
information about which of its eight potential children exist, as the
tree may be sparse, and the offset to its child nodes in the array.
The children of each inner node are stored contiguously in the array,
allowing them to be referenced by a single offset to reduce memory
use. Each inner node’s 64-bit descriptor is divided into an 8-bit mask
indicating which children exist, a 55-bit offset to the children in the
array and a 1-bit flag indicating whether the node is a leaf. The 8-bit
child mask stores a 1 in the i’th bit if the i’th child exists, and a 0
if not. A particular child node can be fetched by incrementing the
inner node’s child offset based on the number of existing children
before the desired one in the mask.

To accelerate both implicit isosurface rendering and volume ray
tracing, we also store the value range as a pair of floats for each node,
for an additional 64 bits. Although storing the value range requires
additional memory, it enables empty-space skipping (Section 6.1)
and active-cell filtering (Section 6.2.2), which significantly improve
performance. We note that, for simplicity, our current approach
redundantly stores these ranges for leaf nodes; however, this is not
required and more optimized layouts are possible.

We construct the octree in an offline process using a simple top-
down serial builder, which outputs the array of nodes to a binary file
for use by the renderer. Although faster parallel octree builds can be
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Figure 4: A 2D illustration of the GTI method. (a) Five unstructured
element configurations are used to tile the level boundary. (b) To
compute the value of P, we use the GTI method to initialize the
vertices of its containing octant, after which we can interpolate
within the octant. (c) Weights for the five 2D cases. Points colored in
green lie in the finer region, and red points denote the octant vertex
being computed.

implemented, we did not find the builder to be a significant bottle-
neck relative to file IO. For example, the builder could construct the
octree representation of the 656M cell ExaJet dataset in 160s.

5. Generalized Trilinear Interpolation (GTI)

Trilinear interpolation is widely used in the visualization of uni-
form grid scalar fields. When interpolating cell-centered data, dual
cells with vertices at cell centers are introduced. Trilinear inter-
polation can then be performed within these dual cells. However,
trilinear interpolation does not easily extend to AMR data, where
interpolating across refinement level boundaries poses a challenge.
At level boundaries, the dual cells do not line up, resulting in T-
junctions [ME11, WCM12]. To reconstruct AMR data across level
boundaries, a reconstruction method is needed to “stitch” across the
boundary. Although in general there is no single “correct” solution
for stitching, prior works [ME11, WCM12, WBUK17, WWW⇤19]
have proposed several approaches that provide C0 continuous results.
However, current approaches can still result in artifacts. Our GTI
method ensures C0 continuity, adapts to the AMR mesh resolution,
and enables artifact- and crack-free visualization.

Figure 4 illustrates our GTI method in 2D. Given a cell-centered
AMR grid (Figure 4a), dual cells (colored in blue) are introduced
in the reconstruction process. Samples that fall within these dual
cells can be computed by simply performing trilinear interpolation
using the values at the cell vertices. However, if the sample point is
located at a level boundary between the dual cells, additional care
must be taken to interpolate smoothly across the boundary.

Our GTI reconstruction process builds on top of the octant
method [WWW⇤19], which subdivides the AMR cells into octants
within which trilinear interpolation can be performed (octant O in
Figure 4b). The key remaining challenge is in how to initialize each
octant’s vertices to achieve smooth interpolation. We achieve this
in our approach by introducing “virtual unstructured elements” to

Figure 5: A 2D illustration of interpolating the value of octant O’s
vertices. (a) A vertex in the finer side octant (O) asks the value from
the coarser side octant (O’). (b) The computation of the value for
Oxy fits into case (4). (c) The computation of the value for O0x fits
into case (1). (d) The computation of the values for Ox and Oy is
symmetric.

stitch across the boundary, which we use to compute the octant ver-
tex values. We note that these elements are not explicitly computed
or stored. Following from our 2:1 refinement ratio assumption, each
octant vertex falls into a fixed location within a limited number
of such virtual unstructured elements: 5 in 2D (Figure 4c) and 20
in 3D (Figure 6). Thus, we can precompute the weights of each
case, and when reconstructing an octant vertex, can determine the
case and interpolate the four (in 2D) or eight (in 3D) vertices of
the AMR cells forming the unstructured stitching element using the
precomputed weights.

5.1. Weight Computation in 2D

To provide an intuitive understanding of the GTI method, we begin
with a 2D example of computing the value at the point P located
at the level boundary shown in Figure 5a. We step through the
initialization of the octant vertices and explicitly derive the weights
for case (4).

The point P is contained within an octant (a quadrant in 2D) in
the finer level cell, within which we wish to perform bilinear interpo-
lation. To do so, we must compute the values of the octant’s vertices
O0, Ox, Oy and Oxy. The octant vertex O0 is always located at the
parent cell’s center, and its value is known. The vertices Ox, Oy and
Oxy lie on the level boundary and must be set to interpolate smoothly
with the data on the coarser side. We use a combination of the octant
method and our GTI method to set their values appropriately.

The vertex Oxy lies at the corner of the octant O, and is contained
within the polygon formed by the cell centers A, B, C, and D. As
mentioned, the value of Oxy is set from the coarser side octant (O0xy).
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To compute the value at O0xy using GTI, we introduce the virtual
unstructured element shown in case (4) (Figure 4), whose vertices
are placed at A, B, C, and D. Following from our 2:1 refinement
ratio assumption, the relative position of the vertices of the polygon
and the location of O0xy within the polygon are fixed, and we can
precompute the interpolation weights for combining the known cell
values at A, B, C, and D.

To derive the weights for case (4), we begin by assuming the field
values at the polygon’s vertices are related by a bilinear function f ,
where a, b, c, and d are real constants.

f (x,y) = ax+by+ cxy+d (1)

We express the interpolated value I at (x,y) as a weighted average
(using weights ci) of the known data values at the cell centers:

I(x,y) = cAA+ cBB+ cCC+ cDD

= Â
i=A,B,C,D

ci f (xi,yi) (2)

The above is subject to a constraint, namely, the interpolation prop-
erty must be satisfied. For p 2 {A,B,C,D}, the following must hold:

f (xp,yp) = I(xp,yp) (3)

Since the above equations hold for all f , they must hold for any
particular f . Thus we can derive the following constraints:

1 = Â
i

ci  f (x,y) = d, d 6= 0

xp = Â
i

cixi  f (x,y) = x

yp = Â
i

ciyi  f (x,y) = y

xpyp = Â
i

cixiyi  f (x,y) = xy

We can compute the weights for each case by substituting the
coordinates of the vertices A, B, C, D into the above constraints and
solving the resulting system of equations. To compute the weights
for case (4), we set O0xy as the origin and, following from the 2:1
refinement ratio, can set the coordinates of the polygon vertices as
A = (�2,�2), B = (2,�2), C = (�2,2), D = (1,1). These relative
positions are the same regardless of the actual AMR level, as the
ratio of the coarser to finer cells is always 2:1, and thus any constant
scaling factor cancels out.

cD = 2cA, cB = cC, 1 = 3cA +2cB, 0 = 2(3cA�4cB) (4)

Finally, we solve algebraically for the weights required to recon-
struct the field value at O0xy within case (4):

cA =
2
9
, cB =

1
6
, cC =

1
6
, cD =

4
9

(5)

Notice D has the highest weight, which is intuitive, given that it
is closer to P than the other vertices. The weights of other cases can
be derived following the same principles.

The computation of the values for Ox and Oy is symmetric (Fig-
ure 5c,d). Both vertices lie along the edge with the coarser side
at the middle of the parent cell’s edge, i.e., at the midpoint of the
octant on the coarser side. To ensure the values computed for these

vertices interpolate smoothly from the coarser side, we set their
values using the coarser side octant. To do so, we must compute a
subset of the coarser octant’s vertices. Specifically, we must find
the value for O0x to compute Ox (Figure 5c), and O0y to compute Oy
(Figure 5d). The value of the finer side octant vertex is then the
average of Oxy and O0x or O0y, for Ox and Oy respectively. As shown
in Figure 5c,d, the computation of O0x and O0y falls into case (1). We
can fetch the cell values corresponding to the triangle’s vertices and
use the precomputed weights for the case to determine the value at
O0x and O0y.

5.2. Weight Computation in 3D

Stitching across level boundaries is more complex in 3D; however,
the GTI method extends directly from the intuition given in the 2D
example to 3D. To reconstruct the field at the sample point P located
in the right-up-far octant of the cell C (Figure 6a), we must compute
the values of the vertices of the right-up-far octant containing the
point, after which we can perform trilinear interpolation in the octant.
In 3D, this requires setting the values of the eight vertices forming
the octant: the cell center O0; the side vertices Ox, Oy, and Oz; the
edge vertices Oxy, Oyz, and Oxz; and the corner Oxyz. The vertex O0
is located at the cell center, and its value is known. The remaining
seven vertices are computed analogously to the 2D case, using a
combination of the octant and GTI methods to achieve smooth
interpolation across the boundary.

When the neighboring cells to the side are refined, the correspond-
ing side vertex (Ox, Oy, Oz) is shared by five cells (one coarser cell
and four finer cells). The side vertex can be enclosed in a pyramid,
after which the interpolation can be reduced to the 2D case (1) by
first interpolating along the base of the pyramid to form case (1)
(Figure 7a). Similarly, each edge vertex (Oxy, Oyz, Oxz) is shared by
four neighboring cells (e.g., cell 0, 2, 4 and 6 for Oyz). Depending
on which neighbors are refined, the interpolation can be simplified
to 2D cases (2)-(5) (Figure 7b).

The corner vertex Oxyz is shared by eight neighboring cells, and
20 cases emerge for computing its value depending on which of
those neighbors are refined (Figure 6). Here we provide a brief
overview of the derivation and how it follows from the 2D example.
For the full derivation, please see the appendix.

Equation (1) from the 2D case, extended to trilinear interpolation
in 3D, can be seen as a linear combination where x = (x,y,z)T :

f (x,y,z) = f (x) =
N

Â
i=1

kifi(x) (6)

where we choose N and the basis functions fi, with unknown co-
efficients ki. In 3D, N = 8, and f1(x) = 1, f2(x) = x, . . . , and
f8(x) = xyz. We assume a coordinate frame that places our “target
vertex” Oxyz at the origin (Figure 6). Given N known pairs (xi, I(xi)),
we require that Equation (3) holds, which leads to the following
system, where V is a multivariate Vandermonde matrix [HK]:

I =V k, Vi j = f j(xi) (7)

Let xOxyz denote the coordinates of Oxyz. As we have set xOxyz as
the origin, f (xOxyz) = f (0). Thus:

f (xOxyz) = e1
T

k = (e1
TV�1)I = c

T
I (8)
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Figure 6: Illustration (not to scale) of the 20 cases for reconstructing the corner vertex Oxyz of an octant that lies on the coarser side of the
boundary. The left-down-near point in each case is coincident with O0 in (a). Green points denote data points on the finer side of the boundary.
The derived weights for interpolating Oxyz in each case are listed in the figure.

Figure 7: The sampling of a side vertex (Ox) or an edge vertex (Oyz)
in 3D can be simplified to a 2D case: (a) can be simplified to 2D
case (1), (b) can be simplified to 2D case (4).

With e1 denoting the canonical basis vector (1,0, . . . ,0)T , k de-
noting the vector of coefficients (k1,k2, . . . ,kN)T , and c being the
solution of the system:

V T
c = e1 (9)

When interpolating between eight cell centers as in Figure 6,
there are 20 different configurations of the cell centers (xi), modulo
symmetry. Each case defines a different V and c by Equations (7)
and (9). For each case, once c is known, the field value at Oxyz can
be computed as follows:

I(xOxyz) = c · I (10)

In other words, c can be thought of as a vector of interpolation
weights. As before, the configurations are fixed and the weights
for each case can be precomputed. The weights for each case were
found numerically. Their solutions are demonstrated in the SymPy
notebook provided in the supplemental material and the detailed
derivation provided in the appendix.

6. Rendering of TB-AMR Data

We implement our TB-AMR volume as a module for the OS-
PRay [WJA⇤16] CPU ray tracing framework, using OSPRay version
1.8. OSPRay is an interactive CPU ray tracing API and engine for
scientific visualization and photorealistic rendering. Internally, OS-
PRay builds on Embree [WWB⇤14] for ray traversal, Intel’s Thread

Building Blocks (TBB) for multithreading and the Intel SPMD Pro-
gram Compiler (ISPC) [PM12] for vectorization. Our module can be
used for interactive high-quality rendering of TB-AMR data in our
layout with both direct volume rendering (Section 6.1) and implicit
isosurface rendering (Section 6.2).

To perform interactive direct volume ray tracing and enable fast
determination of cells containing a desired isosurface, we must
perform many top-down queries to look up dual and leaf cells con-
taining a query point. Given the desired point(s) and optional trans-
fer function or isovalue, we traverse the octree top-down using
a software-maintained stack. The optional transfer function and
isovalue are used in combination with the node’s value range to
determine whether a node is fully transparent and can be skipped.

When interpolating within a nonboundary region, we must find
the values of the eight corners of the dual cell to interpolate be-
tween. As the corners of the cell are likely to exist down similar
subtrees of the octree, it is beneficial to traverse all eight points at
once, as opposed to performing eight top-down traversals. To do
so, findDualCell uses a bitmask to track which of the eight query
points require traversal of each child node being considered, and
stores this information along with the node ID in the stack. When
interpolating at the level boundary, we must find the corresponding
leaf cells that enclose the virtual unstructured element for our GTI
method. To find these cells, the findLeafCell traversal takes a query
point and traverses it to the bottom of the tree, returning the leaf cell
containing the point.

6.1. Direct Volume Rendering (DVR)

Volume types in OSPRay need to implement only a sample function
(e.g., the GTI method) to sample the continuous field at a 3D point
in the volume, and a stepRay function to advance the ray to the next
sample point. However, OSPRay 1.8’s volume rendering is built on
taking a fixed step size (see Figure 8a) and does not support adjusting
the opacity when changing the step size dynamically along the ray, as
is required to adaptively sample an AMR volume. These limitations
have been addressed in OSPRay 2.0, but were not available for our

submitted to Eurographics Conference on Visualization (EuroVis) (2020)



Author preprint: Wang et al. / CPU Ray Tracing of Tree-Based Adaptive Mesh Refinement Data 7

(a) Fixed step size (b) Skip empty space (c) Adaptive sampling
Figure 8: Ray traversal through a TB-AMR volume. (a) A fixed step
size will lead to severe over-sampling (blue ray) or under-sampling
(green ray). We perform a ray-octree traversal with (b) empty space
skipping and (c) adaptive sampling, to both skip empty space and
sample the data based on the underlying data resolution.

implementation. Without proper support for adaptively sampling the
data, our renderer would either produce artifacts or have to severely
over- or under-sample the data.

Therefore, in our current implementation, we modified OSPRay’s
scientific visualization renderer to support traversing and integrating
the TB-AMR volume over a given ray interval. We employ a stan-
dard front-to-back octree ray traversal, where inner and leaf nodes
are skipped if their contained value range is entirely transparent,
and the integration step size is adjusted to the width of the leaf cell
being sampled (Figure 8). To determine if a node and its children
are entirely transparent, we use OSPRay’s built-in preintegrated
transfer function. OSPRay’s preintegrated transfer function supports
arbitrary 1D opacity configurations and provides a method to query
the maximum opacity over a given value range. If the returned max
opacity is 0, we can skip the node and its children. To compute
samples for the ray interval, we employ a user-selected reconstruc-
tion kernel to compute the sample value (e.g., finest [WBUK17],
octant [WWW⇤19] or our GTI method). Our octree traversal en-
sures that each cell can be sampled accurately, and our GTI method
ensures the samples reconstructed in the cells are continuous, even
at level boundaries.

6.2. Implicit Isosurface Ray Tracing

A standard approach for isosurface rendering is to perform explicit
isosurface extraction, producing a set of triangles forming the sur-
face. In the case of TB-AMR data, explicit isosurface extraction
could be done by treating the octants as the primitives containing the
surface, where our GTI method can be used to set the values at the
vertices of each octant (Figure 9a). Marching cubes could then be
performed within each octant, for example. However, the number of
triangles that would be produced would consume a large amount of
memory and be expensive to render. An alternative is to use implicit
isosurface ray tracing, where we perform an implicit ray-isosurface
intersection, rather than explicitly extracting surface geometry (see,
e.g., [PSL⇤98, MKW⇤04, WFM⇤05, KWH09, WWW⇤19]. In our
approach, we adopt the hybrid implicit isosurface method of Wang
et al. [WWW⇤19], which was used in combination with their octant
reconstruction method for BS-AMR data. Hybrid implicit isosurface
ray tracing extracts a list of active octants as a set of vertex-centered
primitives that are placed into an Embree [WWB⇤14] bounding vol-
ume hierarchy (BVH) to accelerate traversal. Within each primitive,
a ray-implicit isosurface intersection is performed [MKW⇤04]. Two

(a) Tiling with octant (b) Apply dual cell (c) Active cell filtering
Figure 9: Optimizations on extracting the active cubic primitives.
(a) The naïve approach tiling the entire domain with octant (red
cube) and resampling the octant’s vertex value. (b) Applying dual
cells (blue cube) at the nonboundary region rather than the octant.
(c) Filter active cell by checking if the value range of cell C and its
neighboring cells (green) overlap with the isovalue.

processes are required to perform hybrid implicit isosurface ray
tracing: 1) extracting a list of vertex-centered primitives from the
cell-centered TB-AMR data and computing the values of the primi-
tive’s vertices and 2) filtering the active primitives (a primitive is an
active primitive if its value range overlaps with the user-specified
isovalue) and performing the ray-isosurface intersection over those
active primitives to render the isosurface. We use our GTI method
for step 1 to ensure a continuous surface is rendered, and our octree
layout to accelerate the cell filtering in step 2.

In step 2, OSPRay uses Embree to build a BVH over the active
primitives and traverse rays through the BVH. The Embree BVH
builder is quite efficient (achieving ⇠ 110 million primitives per
second), and the ISPC intersection within each primitive is effec-
tively vectorized. The main performance bottleneck lies in the first
process where resampling is required. A naïve approach involves
using an octant as the primitive (Figure 9a). To extract the primi-
tives, we iterate all the input cells, generate eight octants for each
cell and compute the value of the octants’ vertices using the GTI
method. Although simple and straightforward, this approach incurs
a massive amount of redundant computation. For example, each
vertex of an octant is recomputed eight times, since it is shared by
eight neighboring octants. To improve the performance of the first
process, we propose two optimizations: 1) using dual cells at non-
boundary regions (Section 6.2.1) and 2) filtering out input cells that
do not contain the isovalue before extracting dual cells and octants
(Section 6.2.2).

6.2.1. Optimization 1: Using Dual Cells at Same-level Regions

One optimization that allows for significantly reducing the number
of primitives that must be traversed by the hybrid implicit isosurface
renderer involves using dual cells in same-level regions instead of
octants. A dual cell in a nonboundary region is enclosed with data
points of known values, for which no costly reconstruction kernel or
boundary stitching is required. More importantly, Figure 9b shows
that an octant of a cell remains an octant of the corresponding dual
cell, which ensures that the final isosurface does not change when
eight octants are merged into a dual cell in the same-level region.
With this optimization, we achieve an approximate 4⇥ speed-up in
extraction time. A detailed benchmark is done in Section 7.3.
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Although Wang et al. applied the same optimization for BS-AMR
data in [WWW⇤19], the implementation for TB-AMR data is more
complicated due to the different data layout. BS-AMR data are
stored as a list of uniform grids, with each grid storing a set of cells
at the same AMR level. For BS-AMR data, it is relatively easy to
construct the dual cells, as we know all the cells in a brick are at
the same level. However, for TB-AMR data, the cells are stored in
octree, and we do not readily have access to information about the
neighboring cells. This makes the decision of whether to construct a
dual cell or an octant complicated, because we will need to check if
the current cell lies in a same-level region

Algorithm 1: Process of extracting cubic primitives (dual cell and octant)
with TB-AMR data (See Figure 9b.)

1 Mesh genActiveCubicPrimitives(Mesh input, float isovalue)
2 Mesh res;
3 for (int i=0; i < input.num_cells(); i++)
4 Ci = input.GetCell(i);
5 for (int j=0; j < 8; j++)
6 Di j = findDualCell(Ci, j)
7 bool inSamelvl = isDualCellInSameLevel(Di j)
8 if(inSamelvl) //dual cell’s vertices are located in same level
9 if(j == 7 && Di j.ValueRange().Contains(isovalue))

10 res.insert_cell(Di j);
11 else // parent cell is at a level boundary
12 Oi j = initOctant(Ci, j)
13 GTI_method(Oi j)
14 if(Oi j.ValueRange().Contains(isovalue))
15 res.insert_cell(Oi j);
16 return res;

When extracting the list of active primitives (octants or dual cells),
we iterate through the cells in the input mesh to create primitives
corresponding to each cells’ octants or dual cells (see Algorithm 1).
In 3D, each cell Ci (Figure 9b) can produce up to eight octants (Oi j),
or be shared by up to eight dual cells (Di j, j 2 {0 . . .7}), where its
center is a vertex of the octant or dual cell, respectively.

As each dual cell Di j contains the octant Oi j, for each octant
we must first determine if the dual cell could be emitted instead;
otherwise, the emitted octant and dual cell would overlap. To do
so, we compute the dual cell’s vertices and traverse them through
the octree to determine if each vertex lies at the same AMR level
(lines 6-7, Algorithm 1). If this is the case, we know a dual cell can
be constructed, and we skip emitting the octant. Each cell center is
shared by up to eight dual cells. Thus, to avoid emitting redundant
dual cells, each cell is responsible for emitting only its last dual cell,
Di7. If the vertices of the dual cell are not all on the same level, the
cell lies at a level boundary and an octant must be emitted instead.
The octant’s vertex values are initialized using our GTI method
(lines 12-13, Algorithm 1). Finally, if the computed dual cell or
octant does not contain the isosovalue, it is discarded.

6.2.2. Optimization 2: Filtering Active Cells

Optimization 1 allows for dramatically reducing the amount of
output active primitives that are fed into Embree for intersection.
However, this optimization as well as the naïve approach (pure
octant) performs the extraction over the list of all input cells. This
approach is fairly inefficient, since we will construct dual cells or
octants for all input cells, even if the isosurface does not pass through
the input cell. What makes matters worse is that the number of input
cells is usually very large in HPC simulations (e.g., 656M cells for

Figure 10: Isosurface extracted on the synthetic data with different
reconstruction methods (isovalue = 6.5). The nearest and current
method is incontinuous; the finest method is nonadaptive; the octant
method is both continuous and adaptive, but produces artifacts at
the boundary; our GTI method shows an artifact-free result that is
closest to the reference result.

Figure 11: Isosurface extracted on real datasets with three recon-
struction methods. Top: LANL meteor-20060 (field: tev). Bottom:
the NASA ExaJet data (field: density). Our GTI method achieves the
highest quality isosurface.

the NASA ExaJet data). A desirable additional optimization that
would significantly improve performance would be to consider only
those input cells that do contain the isosurface. The input cell C (see
Figure 9c) is labeled an “active cell” when the value range of C and
its neighbors (colored in green) contains the specified isovalue. If it
can be determined that C is not active, i.e., the value range does not
contain the isovalue, we can discard it from the input.

To check if the input cell C is an active cell, we traverse the
octree from the root and return true if we find any neighbor of C
whose value range unioned with C’s contains the isovalue. A naïve
approach would traverse to the leaves of the tree, querying each
neighbor’s value and testing if the value range overlaps the isovalue
one by one. However, we can leverage the value range stored at
each inner node to terminate traversal early, when it is found that
the inner node’s value range does not contain the isovalue. Given
two neighboring cells that are descendants of an inner node Ni, we
know that if the value range of Ni does not contain the isovalue, its
children cannot contain the isovalue and do not need to descend the
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(a) p4est-Mandelbulb, 2.6M cells (b) LANL Asteroid Impact (t = 20060),
158M cells

(c) NASA Landing Gear, 262M cells,
1.59M tris

(d) NASA ExaJet + mirrored instance,
1.31B cells, 126M triangles

Figure 12: High-fidelity visualization of the different datasets (image resolution: 1000⇥1000, our GTI reconstruction method is applied).
(a) DVR of Mandelbulb only (0.31 fps); (b) combined DVR and isosurface of meteor (0.94 fps); (c) combined DVR and isosurface of NASA
LandingGear (5.02 fps); (d) isosurface raycasting with ambient occlusion of NASA exajet (14.28 fps).

tree further. We show that the extraction time can be considerably
reduced with this optimization in Section 7.3.

7. Results

In this section, we evaluate three key aspects of our system: the
final image quality of the GTI method (Section 7.1); rendering
performance (Section 7.2); isosurface extraction time (Section 7.3).

Evaluation Hardware. We perform our benchmarks on a quad-
socket workstation, equipped with four Intel Xeon E7-8890v3 CPUs
(2.5 GHz base clock), with a total of 72 physical cores (144 threads)
and 3 TB RAM.

Data Description. We evaluate our GTI method on five datasets,
ranging from small to large and covering both TB-AMR and BS-
AMR data:

• Synthetic: is a small dataset (288 cells) that is generated on the
fly from a 43 uniform grid by refining the right-half cells. Of
particular interest for this dataset is that we can define a test
function over the mesh and get a reference result to compare
with.

• p4est-Mandelbulb: is a 3D fractal, constructed using spherical
coordinates by White and Nylander [WN]. This data is created
in p4est and demonstrates our system’s capablities for rendering
TB-AMR data.

• Meteor: is a simulation of an asteroid impact in deep ocean water
from LANL [PG17]. Multiple timesteps of this data are available
for the benchmark. We use timestep 20060 in our benchmarks.

• LandingGear: was originally BS-AMR data that was produced
by NASA for simulating the air flow around an aircraft’s landing
gear assembly. It is also used in [WBUK17, WWW⇤19]. Here,
we load it into OSPRay and convert it into the TB-AMR format
for our use. 262 M cells are stored in the exported file.

• Exajet: is a Cartesian grid AMR dataset produced by NASA us-
ing PowerFlow [Exa98], simulating the air flow around a jet. This
model contains 656M cells across four levels along with 63.2M
triangles, representing half of the jet. To create a visualization of
the entire jet, we create a mirrored instance of the input jet using
OSPRay’s instancing functionality, for a total of 1.31B cells and
126M triangles.

7.1. Image Quality with Different Interpolants

Different reconstruction methods result in isosurfaces of varying
smoothness and quality. To evaluate the functionality of our GTI
method, we compare it with four strategies proposed in the related
research [WBUK17, WWW⇤19]. We perform the benchmark on
synthetic data with each cell’s value computed with a test function
f (x,y,z) = xyz. We run this experiment on synthetic data, so that we
can generate a reference result for comparison. The reference image
shows an isosurface generated with a 43 uniform grid using trilinear
interpolation (Figure 10). In contrast, isosurfaces in other images
are extracted from an adaptive mesh, which is generated from the
uniform grid by refining voxels at the right side of the boundary
(x = 2).

Figure 10 shows the isosurface generated with isovalue = 6.5.
We observe that the nearest method produces severe artifacts in the
visualization; the current method is adaptive but yields cracks at
the boundary. The finest method stitches at the boundary but loses
adaptivity, and thus we see some artifacts at the coarser side. The
octant is continuous and adaptive, but it results in some unsmooth
artifacts at the boundary. Our GTI method produces a crack-free
isosurface that is visually closest to the underlying data.

We then test the reconstruction methods with the LANL meteor
and NASA ExaJet dataset (Figure 11). We compare three methods:
current, octant and GTI. As with the synthetic data result, we find
that the GTI method produces the highest quality crack-free iso-
surface.

7.2. Rendering Performance

Interactive rendering of BS-AMR data in OSPRay has previously
been demonstrated (see, e.g., [WBUK17, WWW⇤19]). However,
support for direct volume rendering or implicit isosurface rendering
of TB-AMR was limited prior to our work. A typical way to render
TB-AMR data with OSPRay or other off-the-shelf tools is to repre-
sent the data as an unstructured mesh. In this section, we compare
rendering performance and memory consumption when visualizing
four datasets with OSPRay’s unstructured mesh renderer and our
approach. We perform a comparison only for direct volume render-
ing, since OSPRay’s built-in isosurface raycasting functionality for
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Mandelbulb Meteor LandingGear

Figure 13: Output images for benchmarks in Table 1. Top row:
volume rendering using OSPRay’s unstructured renderer with
samplingRate = 5. Middle row: rendering using OSPRay unstruc-
tured renderer with samplingRate > 5, tuned such that the image
best matches the output of our method. Bottom row: volume render-
ing using our approach and the GTI interpolation strategy.

OSPRay Unstructured Ours

Data Cells Low SR High SR Mem FPS Mem

p4est-mandel 2.6M 3.31 1.40 0.83 0.33 0.46
Meteor-20060 158M 1.42 0.83 40.66 0.96 4.62
LandingGear 262M 1.72 0.06 51.85 3.10 7.41
ExaJet 656M N/A N/A N/A 2.25 33.72

Table 1: Volume rendering benchmarks on the quad-socket work-
station. “Mem” denotes the peak resident memory size in GB.
FPS denotes the number of frames per second. For “low SR”,
samplingRate was set to 5 for all datasets. For “high SR”,
samplingRate was set to 10, 9 and 160 for Mandel, Meteor and
LandingGear, respectively.

the unstructured mesh failed on three of the four tested datasets.
However, our approach performs well when conducting implicit
isosurface ray tracing—isosurface rendering can be performed at
14.28 FPS (average) for the largest dataset tested (the NASA ExaJet,
Figure 12d).

OSPRay’s existing unstructured volume renderer advances the
ray using a single fixed increment, which is determined by
samplingStep⇥ samplingRate. The samplingStep is roughly the
cell’s width, whereas the samplingRate is a user-defined value
that is approximately the number of samples per cell. When render-
ing data on an uniform grid, a lower value of samplingRate will
result in higher rendering performance at the cost of image quality.
For an adaptive mesh, choosing an appropriate samplingRate is
a difficult task. For example, in the LandingGear dataset, the ratio

Isosurface extraction time (s)

Data Cells ISO Active Naive Opt. 1 Opt. 2

Synthetic 288 6.5 56.61% 0.02 0.03 0.02
p4est-mandel 2.6M 0.9 64.84% 3.68 8.98 5.63
Meteor-20060 158M 0.2 1.44% 114.08 56.82 6.68
LandingGear 262M 99K 7.08% 243.21 59.31 14.46
ExaJet 656M 1.2 0.83% 505.96 109.81 19.13

Table 2: The isosurface extraction time of different approaches. For
each dataset, we show the input cell number, isovalue, active cell
percentage (active cell / input cell) and extraction time (s).

between coarsest and finest cell width can be as high as 4096:1. A
samplingRate that is high enough to sample finer cells well will
severely over-sample coarser cells.

As part of our benchmark, we measured the performance of
OSPRay’s unstructured renderer with low and high values of
samplingRate (“low SR” and “high SR”, respectively, in Table 1.)
For “low SR”, samplingRate was set to constant for all datasets,
whereas for “high SR”, samplingRate was adjusted in order for
the result to best match the output of our tree-based algorithm. See
the caption of Table 1 for specific sampling rate values.

Performance and memory consumption of both methods are
demonstrated in Table 1, and the output images are shown in Fig-
ure 13. OSPRay’s unstructured renderer crashed when rendering
the ExaJet dataset, likely due to the enormous number of primitives.
Thus, we report only the result of our approach for that dataset.
When the unstructured renderer is set to “high SR”, it produces
images with similar quality to our approach, yet our framerates are
comparable or higher. By contrast, when using “low SR” with the
unstructured renderer, our approach can render images of higher
quality, while maintaining comparable framerates. The Mandel-
bulb dataset (which is the smallest) is the lone exception; for all
real-world large datasets, our approach is significantly faster than
OSPRay’s unstructured mesh renderer.

7.3. Isosurface Extraction Time

Besides rendering performance, it is worth considering the time cost
of isosurface extraction. In this section, we benchmark the process-
ing time of extracting the active cubic primitives, and the scalability
of our system as the chosen isosurface grows in complexity (higher
active-cell percentage).

Table 2 shows the extraction time when applying the naïve ap-
proach and two optimizations on five datasets. From this table, we
observe that the optimizations hamper the performance for a small
dataset (e.g., synthetic and p4est). Performing these optimizations
does take additional compute time, which on small datasets may not
pay off compared to a brute force approach. However, the optimized
approaches performed much better than the naïve approach when it
comes to medium or large datasets. The speed-ups of the two opti-
mizations are 2⇥-5⇥ and 16⇥-27⇥, respectively. Furthermore, our
system is capable of processing the LandingGear dataset (262 mil-
lion cells) in 15 s, which is similar to the performance demonstrated
in [WWW⇤19] by using KD-tree.

In terms of scalability, we benchmark extraction time with in-
creasing active cell percentage. Theoretically, a higher active cell
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Figure 14: The processing time (with both optimizations applied)
of extracting isosurface for the NASA Exajet dataset vorticity field
for different isovalues. A different isosurface will result in various
active cell percentages.

percentage, along with a more complex isosurface, indicates more
data to process and thus a longer processing time. Particularly in our
experiment, we specify different isovalues to the NASA exajet data
(field: vorticity) and depict the result in Figure 14. We conclude that
the extraction time positively correlates with the active cell percent-
age. Our extraction time increases only by 8.2⇥ (20.6s! 168.8s)
when the active cell percentage goes up by 55.7⇥ (1.5%! 83.6%),
likely due to better memory access patterns despite the increased
workload.

8. Conclusion

In this work, we have presented an efficient solution for interac-
tive high-fidelity visualization of cell-centered tree-based AMR
data. To correctly handle interpolation at level boundaries, we
proposed a novel reconstruction strategy—Generalized Trilinear
Interpolation—-which is continuous and adaptive, and allows for
producing higher quality visualizations than the current state of
the art [WBUK17, WWW⇤19]. Besides TB-AMR data, GTI can be
applied to other AMR or multiresolution grids to produce a smooth
reconstruction field. To organize the “flattened” TB-AMR data, our
solution employs a sparse octree to which arbitrary AMR formats
can be easily adapted and coupled. In addition, we implemented
vectorized traversal kernels on top of the hierarchy to support fast
data query on multicore CPU architectures. Along with empty-space
skipping, adaptive sampling and isosurface extraction optimizations,
our system is capable of performing interactive high-fidelity visual-
ization of large-scale TB-AMR data with volume and isosurface ray
tracing and advanced shading effects.

We integrated our approach into the OSPRay ray tracing library
as a module and released it as an open-source module. As OS-
PRay is integrated into ParaView and VisIt [WBUK17, WUP⇤18],
our module can be leveraged by visualization practitioners and do-
main scientists for rendering TB-AMR data, especially within the
p4est community. In the future, we hope to investigate better im-
plementations of volume rendering traversal and sampling using
neighbor-finding techniques to locate dual cells and reduce redun-
dant traversal. In addition, a more compact representation of our
TB-AMR data structure should be possible and would be desirable.

Lastly, although our work was done on OSPRay 1.8, OSPRay 2.0
brings significant changes that we will incorporate into our module
to make it available through the new OpenVKL library and OSPRay
2.0 API.
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A Weights derivation for cases in Figure 6

A.1 Review of previously-covered material in paper

Recall that in order to render crack-free isosurfaces, we must reconstruct the value of the field at the corners

of our “octants”. For an octant that lies on the coarser side of a level boundary, 20 cases exist. (Figure 6

in the paper, and Figure 1 in this appendix.) Note that points colored in black correspond to the centers of

cells on the coarse side, whereas points colored in green correspond to cell centers on the fine side.

A.2 Overview

Our goal is to find the value of the field � at point T , given that the values at vertices 0 through 7 are known

a priori as �1 through �7. (T , illustrated in red in Figure 1, is the position of the corner of the octant that

we are interested in. This point is denoted as Oxyz in the paper, but we use T here for brevity.) Denoting

the value of � at T as �T , we can express �T as the weighted sum of the known field values �i where ci are

scalar weights:

�T =

7X

i=0

ci�i (1)

In this appendix, we will show how the weights ci are found for each of the cases (a) through (t).

Figure 1: Alternate version of Figure 6 in the main part of the paper. Figure 6 is not drawn to scale, however

this figure is drawn to scale using an orthographic projection. Some edges are transparent (gray) in order to

clearly show the geometry behind the edges. The edge between vertex 1 and 5 often occludes the geometry

behind it, so it has been omitted from the illustrations of cases (a) through (t). For reference, weights are

shown for case (a). Please see Table 5 for an exhaustive list of weights.
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A.3 Case (a)

Let us start with a case where one vertex belongs to a finer level cell (vertex 1, in green), and the other

seven vertices belong to coarser level cells (0, 2, 3, 4, 5, 6, and 7). See Figure 2 for reference.

Figure 2: Diagram for case (a). See Table 1 for vertex positions.

For convenience, let us choose a coordinate system that puts T at the origin. The orientation of the

coordinate axes is shown in Figure 2. Assuming this coordinate system, the coordinates of vertices 0 through

7 are given in Table 1. With these vertex positions, we can build our multivariate Vandermonde [?] matrix

Vertex Position

0 1/2(-h,-h,-h)

1 1/4(h,-h,�h)

2 1/2(-h,h,-h)

3 1/2(h,h,-h)

4 1/2(-h,-h,h)

5 1/2(h,-h,h)

6 1/2(-h,h,h)

7 1/2(h,h,h)

Table 1: Vertex positions for case (a). See Figure 2 for an illustration.

V , which is used in Equations 7, 8 and 9 in the main paper. V is given as follows, where xi, yi, and zi are

the x, y, and z coordinates of vertex i:

V =

2

66666666664

1 x0 y0 z0 x0y0 x0z0 y0z0 x0y0z0

1 x1 y1 z1 x1y1 x1z1 y1z1 x1y1z1

1 x2 y2 z2 x2y2 x2z2 y2z2 x2y2z2

1 x3 y3 z3 x3y3 x3z3 y3z3 x3y3z3

1 x4 y4 z4 x4y4 x4z4 y4z4 x4y4z4

1 x5 y5 z5 x5y5 x5z5 y5z5 x5y5z5

1 x6 y6 z6 x6y6 x6z6 y6z6 x6y6z6

1 x7 y7 z7 x7y7 x7z7 y7z7 x7y7z7

3

77777777775

(2)

2



Recall from Equation 9 in the main paper that we can find the vector of weights c = (c0, c1, . . . , c7) by

solving the linear system V
T c = e1, where e1 denotes the canonical basis vector (1, 0, . . . , 0)

T
. This linear

system is written explicitly below:

2

66666666664

1 1 1 1 1 1 1 1

x0 x1 x2 x3 x4 x5 x6 x7

y0 y1 y2 y3 y4 y5 y6 y7

z0 z1 z2 z3 z4 z5 z6 z7

x0y0 x1y1 x2y2 x3y3 x4y4 x5y5 x6y6 x7y7

x0z0 x1z1 x2z2 x3z3 x4z4 x5z5 x6z6 x7z7

y0z0 y1z1 y2z2 y3z3 y4z4 y5z5 y6z6 y7z7

x0y0z0 x1y1z1 x2y2z2 x3y3z3 x4y4z4 x5y5z5 x6y6z6 x7y7z7

3

77777777775

2

66666666664

c0

c1

c2

c3

c4

c5

c6

c7

3

77777777775

=

2

66666666664

1

0

0

0

0

0

0

0

3

77777777775

(3)

Substituting the vertex positions given in Table 1, we obtain V for case (a):

V =

2

6666666666664

1 �h
2 �h

2 �h
2

h2

4
h2

4
h2

4 �h3

8

1
h
4 �h

4 �h
4 �h2

16 �h2

16
h2

16
h3

64

1 �h
2

h
2 �h

2 �h2

4
h2

4 �h2

4
h3

8

1
h
2

h
2 �h

2
h2

4 �h2

4 �h2

4 �h3

8

1 �h
2 �h

2
h
2

h2

4 �h2

4 �h2

4
h3

8

1
h
2 �h

2
h
2 �h2

4
h2

4 �h2

4 �h3

8

1 �h
2

h
2

h
2 �h2

4 �h2

4
h2

4 �h3

8

1
h
2

h
2

h
2

h2

4
h2

4
h2

4
h3

8

3

7777777777775

(4)

Using V as given above, and solving the linear system given in Equation 9 in the main paper (Equation 3 in

this appendix), we obtain our weights c0 through c7 below (Equation 5). Importantly, due to cancellation,

the final result is independent of h.

2

66666666664

c0

c1

c2

c3

c4

c5

c6

c7

3

77777777775

=

2

666666666666664
1
9

13
108

1
12

1
9

1
12

1
9

8
27

1
12

3

777777777777775

(5)

Now, assuming that case (a) holds, if the field values �0, �1, . . . , �7 are known, we can use the above results

with Equation 1 to reconstruct the value of �T :

�T =
1

12
�0 +

8

27
�1 +

1

9
�2 +

1

12
�3 +

1

9
�4 +

1

12
�5 +

13

108
�6 +

1

9
�7 (6)
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A.4 Case (b)

In case (b), two vertices (instead of one) correspond to the centers of finer level cells. These two vertices (1

and 3) are illustrated in green.

Figure 3: Diagram for case (b). See Table 2 for vertex positions.

Vertex positions for case (b) are given in Table 2. Note that now both vertex 1 and vertex 3 are closer

to the origin. (Recall that, by construction, the origin coincides with point T .)

Vertex Position

0 1/2(-h,-h,-h)

1 1/4(h,-h,�h)

2 1/2(-h,h,-h)

3 1/4(h,h,-h)

4 1/2(-h,-h,h)

5 1/2(h,-h,h)

6 1/2(-h,h,h)

7 1/2(h,h,h)

Table 2: Vertex positions for case (b). See Figure 3 for an illustration.

Substituting the vertex positions given in Table 2, into Equation 2, we obtain V for case (b):

V =

2

6666666666664

1 �h
2 �h

2 �h
2

h2

4
h2

4
h2

4 �h3

8

1
h
4 �h

4 �h
4 �h2

16 �h2

16
h2

16
h3

64

1 �h
2

h
2 �h

2 �h2

4
h2

4 �h2

4
h3

8

1
h
4

h
4 �h

4
h2

16 �h2

16 �h2

16 �h3

64

1 �h
2 �h

2
h
2

h2

4 �h2

4 �h2

4
h3

8

1
h
2 �h

2
h
2 �h2

4
h2

4 �h2

4 �h3

8

1 �h
2

h
2

h
2 �h2

4 �h2

4
h2

4 �h3

8

1
h
2

h
2

h
2

h2

4
h2

4
h2

4
h3

8

3

7777777777775

(7)
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Solving the linear system given in Equation 3, we obtain the following weights for case (b):

2

66666666664

c0

c1

c2

c3

c4

c5

c6

c7

3

77777777775

=

2

666666666666664
1
12

1
9

1
12

1
9

2
9

1
12

2
9

1
12

3

777777777777775

(8)

A.5 Case (c)

Case (c) is like case (b), but with slightly di↵erent geometry. We will produce di↵erent weights since the

relative positions of the vertices that belong to the finer level cell centers are di↵erent.

Figure 4: Diagram for case (c). See Table 3 for vertex positions.

Vertex Position

0 1/2(-h,-h,-h)

1 1/4(h,-h,�h)

2 1/2(-h,h,-h)

3 1/2(h,h,-h)

4 1/2(-h,-h,h)

5 1/2(h,-h,h)

6 1/2(-h,h,h)

7 1/4(h,h,h)

Table 3: Vertex positions for case (c). See Figure 4 for an illustration.

We find the Vandermonde matrix V for Case (c) as we have done for the previous cases. V is given as

5



follows:

V =

2

6666666666664

1 �h
2 �h

2 �h
2

h2

4
h2

4
h2

4 �h3

8

1
h
4 �h

4 �h
4 �h2

16 �h2

16
h2

16
h3

64

1 �h
2

h
2 �h

2 �h2

4
h2

4 �h2

4
h3

8

1
h
2

h
2 �h

2
h2

4 �h2

4 �h2

4 �h3

8

1 �h
2 �h

2
h
2

h2

4 �h2

4 �h2

4
h3

8

1
h
2 �h

2
h
2 �h2

4
h2

4 �h2

4 �h3

8

1 �h
2

h
2

h
2 �h2

4 �h2

4
h2

4 �h3

8

1
h
4

h
4

h
4

h2

16
h2

16
h2

16
h3

64

3

7777777777775

(9)

Given V , we solve for the weights like we did before, and obtain:

2

66666666664

c0

c1

c2

c3

c4

c5

c6

c7

3

77777777775

=

2

666666666666664
4
15

1
12

1
20

1
10

1
20

1
10

4
15

1
12

3

777777777777775

(10)

A.6 Cases (d) to (t)

Above, we derive weights for cases (a), (b), and (c). All other cases are derived analogously. For brevity, a

detailed derivation will be omitted for cases (d) to (t). Instead, see Table 4 for the vertex positions used for

each case, and Table 5 for the matrix V and final weights used in each case.
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Position of vertex

Case 0 1 2 3 4 5 6 7

a 1/2(-h,-h,-h) 1/4(h,-h,-h) 1/2(-h,h,-h) 1/2(h,h,-h) 1/2(-h,-h,h) 1/2(h,-h,h) 1/2(-h,h,h) 1/2(h,h,h)

b 1/2(-h,-h,-h) 1/4(h,-h,-h) 1/2(-h,h,-h) 1/4(h,h,-h) 1/2(-h,-h,h) 1/2(h,-h,h) 1/2(-h,h,h) 1/2(h,h,h)

c 1/2(-h,-h,-h) 1/4(h,-h,-h) 1/2(-h,h,-h) 1/2(h,h,-h) 1/2(-h,-h,h) 1/2(h,-h,h) 1/2(-h,h,h) 1/4(h,h,h)

d 1/2(-h,-h,-h) 1/4(h,-h,-h) 1/2(-h,h,-h) 1/2(h,h,-h) 1/2(-h,-h,h) 1/2(h,-h,h) 1/4(-h,h,h) 1/2(h,h,h)

e 1/2(-h,-h,-h) 1/4(h,-h,-h) 1/2(-h,h,-h) 1/4(h,h,-h) 1/2(-h,-h,h) 1/4(h,-h,h) 1/2(-h,h,h) 1/2(h,h,h)

f 1/2(-h,-h,-h) 1/4(h,-h,-h) 1/2(-h,h,-h) 1/4(h,h,-h) 1/2(-h,-h,h) 1/2(h,-h,h) 1/4(-h,h,h) 1/2(h,h,h)

g 1/2(-h,-h,-h) 1/4(h,-h,-h) 1/4(-h,h,-h) 1/2(h,h,-h) 1/2(-h,-h,h) 1/2(h,-h,h) 1/2(-h,h,h) 1/4(h,h,h)

h 1/2(-h,-h,-h) 1/4(h,-h,-h) 1/2(-h,h,-h) 1/4(h,h,-h) 1/2(-h,-h,h) 1/4(h,-h,h) 1/2(-h,h,h) 1/4(h,h,h)

i 1/2(-h,-h,-h) 1/4(h,-h,-h) 1/2(-h,h,-h) 1/4(h,h,-h) 1/4(-h,-h,h) 1/2(h,-h,h) 1/4(-h,h,h) 1/2(h,h,h)

j 1/2(-h,-h,-h) 1/4(h,-h,-h) 1/4(-h,h,-h) 1/2(h,h,-h) 1/4(-h,-h,h) 1/2(h,-h,h) 1/2(-h,h,h) 1/4(h,h,h)

k 1/2(-h,-h,-h) 1/4(h,-h,-h) 1/2(-h,h,-h) 1/4(h,h,-h) 1/2(-h,-h,h) 1/2(h,-h,h) 1/4(-h,h,h) 1/4(h,h,h)

l 1/2(-h,-h,-h) 1/4(h,-h,-h) 1/4(-h,h,-h) 1/4(h,h,-h) 1/2(-h,-h,h) 1/2(h,-h,h) 1/2(-h,h,h) 1/4(h,h,h)

m 1/2(-h,-h,-h) 1/4(h,-h,-h) 1/2(-h,h,-h) 1/4(h,h,-h) 1/4(-h,-h,h) 1/2(h,-h,h) 1/2(-h,h,h) 1/4(h,h,h)

n 1/2(-h,-h,-h) 1/2(h,-h,-h) 1/4(-h,h,-h) 1/4(h,h,-h) 1/2(-h,-h,h) 1/4(h,-h,h) 1/4(-h,h,h) 1/4(h,h,h)

o 1/2(-h,-h,-h) 1/4(h,-h,-h) 1/4(-h,h,-h) 1/4(h,h,-h) 1/4(-h,-h,h) 1/2(h,-h,h) 1/4(-h,h,h) 1/2(h,h,h)

p 1/2(-h,-h,-h) 1/4(h,-h,-h) 1/4(-h,h,-h) 1/4(h,h,-h) 1/4(-h,-h,h) 1/2(h,-h,h) 1/2(-h,h,h) 1/4(h,h,h)

q 1/2(-h,-h,-h) 1/4(h,-h,-h) 1/2(-h,h,-h) 1/4(h,h,-h) 1/4(-h,-h,h) 1/4(h,-h,h) 1/4(-h,h,h) 1/4(h,h,h)

r 1/2(-h,-h,-h) 1/4(h,-h,-h) 1/4(-h,h,-h) 1/4(h,h,-h) 1/4(-h,-h,h) 1/4(h,-h,h) 1/2(-h,h,h) 1/4(h,h,h)

s 1/2(-h,-h,-h) 1/4(h,-h,-h) 1/4(-h,h,-h) 1/4(h,h,-h) 1/4(-h,-h,h) 1/4(h,-h,h) 1/4(-h,h,h) 1/2(h,h,h)

t 1/2(-h,-h,-h) 1/4(h,-h,-h) 1/4(-h,h,-h) 1/4(h,h,-h) 1/4(-h,-h,h) 1/4(h,-h,h) 1/4(-h,h,h) 1/4(h,h,h)

Table 4: Vertex positions for all cases in Figure 1. For instance, the second column (labeled “0”) gives the

position of vertex 0. The third column (labeled “1”) gives the position of vertex 1, etc.
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Table 5: Vandermonde matrix V and weights vector for each case.
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